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Abstract

In this paper, a numerical study is presented for the free vibration of skewed open circular cylindrical
deep shells. The formulation considers first-order shear deformation theory of shells and includes rotary
inertia and shear deformation so that thin-to-moderately thick shells can be analyzed. A set of grid points,
the number of which depends upon the orders of the polynomials chosen for the displacement and rotation
components, on the middle surface of the shell is defined first. For a particular displacement component,
the field functions are derived corresponding to each node from the above-mentioned set of points and are
used in the Rayleigh–Ritz method to calculate frequencies and mode shapes. Convergence study with
reference to the order of the polynomials used for the displacement fields was performed first. Numerical
results obtained from the present method are compared with those from the finite element method and very
good agreement is observed. Additional results are presented and discussed in this paper for skewed panels
clamped at the curved edges and free at the straight parallel edges.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In the published monograph (NASA SP – 288) by Leissa [1], one can find that the shell
vibrations research has been reported as early as 1888 by Lord Rayleigh and A.E.H. Love. This
research topic has since attracted many researchers and many review articles have appeared in the
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

E modulus of elasticity
h thickness of the shell
k shear correction factor
[K] stiffness matrix
L length
[M] mass matrix
R radius of the middle surface
u, v, w displacement components in x, y, z

directions

x, y, z coordinates in axial, circumferential
and radial directions

n Poisson’s ratio
O oR

ffiffiffiffiffiffiffiffiffi
r=E

p
, dimensionless frequency

parameter
o circular frequency in radian/second
r mass density of the shell material
b1, b2 parameters associated with the rotation

of the normal to the middle surface
y0 subtended angle of the cylindrical panel
x, Z natural coordinates
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literature. Recently published work by Qatu [2,3] has mentioned papers published during the
period 1989–2000 on the dynamic behavior of homogeneous and composite shells with main
thrust on the free vibration. In the reference section, Qatu has also included review articles by
others after 1973. Owing to the applications of open shell structures in aerospace, automotive,
civil, marine and mechanical engineering, open rectangular cylindrical shallow and deep panels
have been studied quite extensively. Results corresponding to both the shallow and deep
rectangular shell panels are available in the literature. Works on the vibrations of shallow
cylindrical shells on triangular, trapezoidal and rhombic planforms have also been reported in the
literature and are not mentioned in the present study as their citations are already available in
recently published review papers by many. Only selective published works are mentioned briefly in
the present study.
Selmane and Lakis [4] presented dynamic and static analysis of thin open cylindrical shells

freely supported along their curved edges and the straight edges are subjected to different
boundary conditions. Bardell et al. [5] analyzed the free vibration problem for completely free
deep cylindrical panel using h–p version of the finite element method (FEM) and then the method
was extended to study thin isotropic conical panels [6]. They used cubic Hermite polynomials as
the element shape functions and enriched the displacement field by orthogonal polynomials.
Using Rayleigh–Ritz method and parametric Bezier functions in the admissible displacement
fields, Singh [7] studied the free vibration of deep doubly curved sandwich shell panels. In this
paper, he compared numerical results from the Rayleigh–Ritz method with those from I-DEAS
for isotropic circular cylindrical and spherical shell panels. Rectangular-type open circular
cylindrical composite shell supported on various combinations of corner and mid-edge points of
the panel was investigated by Singh and Shen [8]. It appears from the authors experience that
there are not many publications on the free vibration of open skewed circular cylindrical deep
panels in the literature.
The present study deals with the free vibration analysis of isotropic skewed open circular

cylindrical shells using modified version of the Rayleigh–Ritz method. The method follows the
FEM, but only one subparametric element is used in the analysis. In the initial steps, the elasticity
equations are defined in the cylindrical coordinate system. The form of the equations is reduced
from 3D to 2D using the middle surface of the cylindrical shell as the reference. Then, the natural
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coordinates are used to define the geometry by prescribing the axial and circumferential
coordinates at the four corner points of the skewed panel and four bilinear shape functions are
used for this purpose. To generate the displacement fields, a different set of grid points are selected
on the reference surface of the shells. A few of the displacement nodes may coincide with those
used for the geometry. The number of the displacement grid points depends solely on the orders of
the polynomials used in each of the two natural coordinates and is considerably higher than the
number of geometric points. By working in the natural coordinate system, expressions for the
stiffness and mass matrices are derived. To assess the applicability of the method, the convergence
study is first carried out for thin and moderately thick cylindrical panels using 451 skew angle and
subtended angles of 301, 451 and 601. The panel is assumed to be clamped at the two parallel
curved edges and the straight parallel edges in the longitudinal direction are kept free. Next, the
results from the present method are compared with the same from a commercial FE code
I-DEAS. After satisfactory resolutions, further results are presented in the graphical form
showing the variation of the first five frequencies with the thickness-to-radius ratio for subtended
angles 30–751 at the interval of 151. Different length-to-radius ratios starting from 0.50 to 4.00
have been used in the present study.
2. Formulation

Open circular cylindrical shells have been studied by many great researchers of the time of
1930–1960 [9]. Using the force–moment–balance method or the energy method, the differential
equations of equilibrium (or motion) were derived in terms of stress and moment resultants. Then
the equations were simplified using the Hooke’s law and the strain–displacement relations to
obtain the final form prior to the solution phase in terms of the displacement components. Also,
plate and shell problems were solved by many [9] using the ‘‘stress function’’, which was
introduced by G.B. Airy in 1862 to solve 2D elasticity problems [10]. The elasticity problems
dealing with continuous systems were also solved by considering both the displacement and stress
function as the primary unknown variables and the method was called the ‘‘mixed method’’. The
many practical problems were solved in closed form during this period. In the late fifties of the last
century, scientists and engineers started solving problems using numerical methods on digital
computers and displacement-based FEM came into existence. This computationally efficient
method grew very rapidly in its first 20 years, became increasingly popular and many commercial
codes were developed during that period, because of it was based on the solid foundation of the
minimization of the potential energy. FEM also followed the same trend as the classical methods
in the fields of stress analysis, vibration and buckling of continuous systems by having purely
displacement based, mixed and hybrid formulations. Because of the digital computers, the century
old Rayleigh–Ritz method began attracting the attention of the researchers in the field of
vibration of beams, plates and shells and consequently many papers have appeared in the
literature after 1970.
The method developed in this paper is a modified form of the Rayleigh–Ritz method to

investigate the free vibration analysis of open circular cylindrical shells. Fig. 1 shows the middle
surface of an isotropic open shell having thickness h, length L, radius R, mass density r and
subtended angle y0. This middle surface of the shell is considered as the reference surface along
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Fig. 1. Middle surface of the circular cylindrical panel with dimensions and coordinate system.
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which the axial (x), circumferential (y) and radial (z) coordinate system is defined. Three
displacement components u0, v0 and w0 are also defined at an arbitrary location x, y, and z,
respectively. These are further expressed in terms of u, v, w, b1 and b2 as shown below for a
circular cylindrical shell.

u0 y;x; zð Þ ¼ uðy;xÞ þ zb1ðy; xÞ,

v0 y;x; zð Þ ¼ vðy;xÞð1þ zÞ þ zb2ðy;xÞ,

w0 y; x; zð Þ ¼ wðy; xÞ. (1)

Here u, v and w denote the displacement components in the axial (x), circumferential (y), and
radial (z) directions, respectively. Symbols b1 and b2 correspond to the components of the
rotation of the normal to the middle surface of the shell in axial and circumferential directions,
respectively, and are made to have the same unit as displacement components using the radius R.
The thickness coordinate z is normalized using the radius R of the middle surface of the shell by
introducing a parameter z ¼ z=R, which is assumed to be z51:0 for thin-to-moderately thick
shell. Also, one should note that ð1þ zÞ, which appear with vðx; yÞ in Eq. (1) due to the curvature
in the circumferential direction, is absent from the first of the above three equations. This is
because of the reason that the curvature is zero along the x-axis. In vector/matrix form, Eq. (1)
appears as

fD0g ¼

1 0 0 z 0

0 1þ z 0 0 z

0 0 1 0 0

2
64

3
75

u

v

w

b1
b2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼ ½G�fDg. (2)
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The strain–displacement relations for the cylindrical shell are derived from the elasticity
equations [11] and are presented in the following form:

�0xx ¼
qu0

qx
; �0yy ¼

1

R

1

1þ z

� �
qv0

qy
þ w0

� �
,

�0yx ¼
1

R

1

1þ z

� �
qu0

qy
þ
qv0

qx
; �0xz ¼

qu0

qz
þ

qw0

qx
,

�0yz ¼
qv0

qz
þ

1

R

1

1þ z

� �
qw0

qy
� v0

� �
. (3)

By using Eq. (1) and approximating ð1þ zÞ�1 � ð1� zÞ, one can reduce Eq. (3) to the following
matrix form:

f�0g5�1 ¼ ½g�5�15fwg15�1, (4)

where f�0g ¼ f�0xx �
0
yy �
0
yx �
0
xz �
0
yzg, fwg

T ¼ fw1 w2 w3 . . . w14 w15g and

g½ � ¼

1 z z2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 z z2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 z z2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 z z2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 z z2

2
6666664

3
7777775
. (5)

Eq. (4) also has been arranged in the same manner as Eq. (2) where the thickness parameterðzÞ is
separated from other parameters that correspond to the reference surface of the shell. Matrix ½g� is
composed of the thickness parameter only, whereas the components of vector fwg in Eq. (4) are
formed with strain and curvature like terms at the middle surface of the shell and are given below.

w1 ¼
qu

qx
; w2 ¼

qb1
qx

; w3 ¼ 0,

w4 ¼
1

R

qv

qy
þ w

� �
; w5 ¼ �

w

R
þ

1

R

qb2
qy

,

w6 ¼ �
1

R

qb2
qy

,

w7 ¼
1

R

qu

qy
þ

qv

qx
; w8 ¼

qv

qx
�

1

R

qu

qy
þ
qb2
qx
þ

1

R

qb1
qy

,

w9 ¼ �
1

R

qb1
qy

; w10 ¼
qw

qx
þ

b1
R
,

w11 ¼ w12 ¼ 0; w13 ¼
1

R

qw

qy
þ

b2
R
; w14 ¼ �w13; w15 ¼

b2
R
. (6)
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The stress–strain relationship can be written as

fs0g ¼ ½E0�f�0g, (7)

where fs0gT ¼ fs0xx s0yy t
0
yx t0xz t

0
yzg and ½E

0� is a fifth-order elasticity matrix, which can be used to
define both isotropic and anisotropic material properties. But for the present analysis, the material
is assumed to be isotropic and the non-zero components of ½E0� matrix are given by

E011 ¼ E022 ¼
E

1� n2
; E012 ¼ E021 ¼

nE

1� n2
; E033 ¼

E

2ð1þ nÞ
; E044 ¼ E055 ¼ kE033, (8)

where n is the Poisson’s ratio and E is the Young’s modulus of the shell material. The above
matrix equations are derived by applying the concept of thin shell theory to the general 3D
elasticity equations in cylindrical coordinates. The preceding equations are valid for both the
closed and open circular cylindrical shells.
With the assumed distribution of u0 and v0 in Eq. (1) along the thickness will produce nearly

constant shear strain and hence shear stress also linear along the thickness of the shell. This is in
contrast to the parabolic distribution of transverse shear stress in bending of plates and shells,
where the shear stresses are supposed to be zero at the inside and outside surfaces and maximum
at the middle surface of the shell. To incorporate the parabolic distribution in an overall sense in
the analysis of thin-to-moderately thick plates and shells, researchers have used a shear correction
factor, which has also been considered in this paper by introducing k in Eq. (8). The commonly
used value of this shear correction factor is either ðp2=12Þ as proposed by Mindlin [12] or (5/6) by
Reissner as discussed by Mindlin in his paper [12]. The value of (5/6) for the shear correction
factor was also suggested by Naghdi [13] who proposed thin shell theory including rotary inertia
and transverse shear deformation terms. Since this factor has a very minor role in the overall
response of thin plates and shells and both values are very close, either one can be used to obtain
basically the same values of the natural frequencies.
It can be seen in Fig. 2(a) that a rectangular panel similar to the one shown in Fig. 1 can be

obtained by cutting the 3D surface by a set of two planes that are perpendicular to the x-axis and
separated by length L. Similarly, a skewed cylindrical panel can be obtained by rotating the same
set of cutting planes by an angle a in the clockwise direction. In the top view, Fig. 2(b), the
projected surface of the skewed panel is shown along with the cutting planes mentioned above.
The reference surface is defined by prescribing x and y coordinates of the four corner points ðxj; yjÞ

for j ¼ 1; 2; 3; 4. The ðx� yÞ coordinates of an arbitrary point on the reference surface of the shell
can be interpolated by using the natural coordinate system ðx; ZÞ in the following manner [14].

yðx; ZÞ ¼
X4
j¼1

Njðx; ZÞyj and xðx; ZÞ ¼
X4
j¼1

Njðx; ZÞxj. (9)

In the above, Njðx; ZÞ is known as the ‘‘shape function’’. The next step in the process is to define the
displacement fields in terms of x and Z coordinates for each of u, v, w, b1 and b2. To achieve this, a
different set of grid points, which are different from the geometric nodes on the reference surface,
is considered. These points are given separate identities, are termed as the displacement nodes,
and may fall on the four corner points coinciding with the geometric nodes. By referring to the
earlier work of Singh and Muhammad [15], it is seen that the grid size of the displacement nodes
depends upon the orders of interpolating polynomials in x and Z. The form of the displacement
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Fig. 2. 3D and top views of the cylindrical panel with intersecting planes.
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field is same as that for the coordinates as given in Eq. (9), except that these are created with
relatively high-order interpolating functions and are given as follows.

u ¼
Xp

j¼1

ujNjðx; ZÞ; v ¼
Xp

j¼1

vjNjðx; ZÞ; w ¼
Xp

j¼1

wjNjðx; ZÞ,

b1 ¼
Xp

j¼1

b1jNjðx; ZÞ; b2 ¼
Xp

j¼1

b2jNjðx; ZÞ, (10)

where p ¼ ðp1 þ 1Þ � ðp2 þ 1Þ, p1 ¼ order of the polynomial in x, similarly p2 ¼ order of the
polynomial in Z, and Nj x; Zð Þ corresponds to the jth displacement shape function and will be
different from the ones used for the geometry, Eq. (9), but the procedure to obtain these is the
same for both cases. Now, substituting Eq. (10) for u; v;w;b1; and b2 into Eq. (6), the w vector can
be expressed as

fwg ¼ ½B�fqg, (11)

where the B-matrix contains shape functions Ni x; Zð Þ and their derivatives with respect to x and Z.
Due to large size of [B], i.e. 15� P, where P ¼ 5� p, it is not included in this paper. The vector
fqgT ¼ fui vi wi b1i b2ig for i ¼ 1; 2; . . . ; p is made of the five dof of each displacement node. The
strain energy expression can be written as

U ¼
1

2

Z
x

Z
y

Z
z

f�0gTfs0g dV .
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Here the infinitesimal volume can further be written as

dV ¼ dzðRþ zÞ dy dx ¼ R2dzð1þ zÞ dy dx ¼ R2ð1þ zÞ dzjJðx; ZÞj dx dZ,

where dy dx ¼ jJðx; ZÞj dx dZ and jJðx; ZÞj ¼ determinant of the Jacobian matrix [14]. By working
on this energy expression with the help of Eqs. (7) and (11) and integrating over the thickness of
the shell, the following matrix equation can be obtained:

U ¼ 1
2
fqgT½K�P�Pfqg, (12)

where the stiffness matrix [K] is given by,

½K �P�P ¼
ELy0
4

Z þ1
�1

Z þ1
�1

½B�T½D�½B�jJðx; ZÞj dx dZ. (13)

In the above, the 15th-order matrix [D] is obtained due to integration over the thickness and is
composed of geometric and material parameters of the panel.
The kinetic energy T of an isotropic cylindrical shell for the given displacement distribution can

be calculated by

T ¼
1

2

Z
V

r
qu0

qt

� �2

þ
qv0

qt

� �2

þ
qw0

qt

� �2
( )

dV ¼
1

2

Z
V

r
qD0

qt

� �T qD0

qt

� �
dV (14)

where r is the density, V is the volume of the shell, and u0, v0 and w0 are the displacement
components along y, x and z directions, respectively, as defined by Eq. (1). By using Eqs. (2) and
(10) and integrating over the thickness of the shell, the following expression is obtained:

T ¼ 1
2
f _qgT½M�P�Pf _qg

where over-dot represents the time derivative of the spatial coordinates and [M] is called the mass
matrix as given by

½M�P�P ¼
rR2Ly0

4

Z þ1
�1

Z þ1
�1

½A�T½A0�½A�jJðx; ZÞj dZ dx, (15)

where ½A0� ¼ a fifth-order matrix resulting from the integration of ½G�T5�3½G�3�5 over the thickness
and ½A� ¼a 5�P matrix consisting of the shape functions Njðx; ZÞ. Terms, attached to u, v and w,
of matrix [A0] introduce translational inertia into the vibrating continuous system. Similarly,
terms, attached with b1 and b2, adds rotary inertia, which has nearly negligible influence on the
lower modes of vibration of thin plates and shells, but become quite significant at higher modes
[12,16] and others). For moderately thick plates and shells, it is significant even at lower end of the
frequency spectrum.
The exact integration over the thickness in Eqs. (13) and (15) is performed, whereas the Gauss

method is used for the integration over the surface. An in-house object-oriented program in
C++ has been developed incorporating the method presented briefly in the preceding section.
The geometric parameters such as (L/R), (h/R), y0 representing length, thickness and subtended
angle are chosen so that the numerical results have a wide range of applications. The frequency
parameter is also made dimensionless by writing O ¼

ffiffiffiffiffiffiffiffiffi
r=E

p
oR. The numerical analysis is

performed in this work on open skewed circular cylindrical panels clamped at the two curved
edges and free at the remaining two straight edges and the value of the Poisson’s ratio n ¼ 0:3 has
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been used throughout the work. First, the convergence study is carried out to examine the
numerical stability of the method. Then, the procedure and results are validated through
comparison of the results from the present method with those obtained from a commercial FE
code I-DEAS. Some new results involving different geometric configurations and boundary
conditions are also presented in the following sections.
3. Convergence study

Panel with the skew angle1 a ¼ 451 is chosen with the fixed curved edge and free straight edge
conditions. The length-to-radius ratio L=R ¼ 0:5 represents very short shell and thin-to-
moderately thick shells are covered using h=R ¼ 0:01 and 0.05, respectively. The shallow shell
theory has been used by many researchers for the analysis of open cylindrical shells with
subtended angle of up to y0 ¼ 301. Hence, subtended angles of y0 ¼ 301, 451 and 601 are
considered in this paper to cover both the shallow and deep panels. The example with y0 ¼ 601 is a
good representative case for deep open shell. Taking these parameters into consideration, natural
frequencies of the first five modes are calculated and presented in Tables 1 and 2 for h=R ¼ 0:01
and 0.05, respectively. The same order is used for polynomials in each of x and Z and is shown by
p1 in column two of the tables. The matrix size dealt with in the calculation is 5ðp1 þ 1Þ2 and the
computation is performed using double precision. The frequency calculations for the convergence
begins with p1 ¼ 4 and stops at p1 ¼ 12. Tables 1 and 2 show that the results are converging at a
steady pace in all the cases. Convergence study was also performed by one of the authors of this
paper [17] for the case with a ¼ 01 representing rectangular circular cylindrical panel and identical
convergence characteristics have been reported there. To observe the convergence graphically,
frequency parameter (O) is plotted against the order of the polynomial (p1) and shown in Fig. 3
for the case with y0 ¼ 601 from Table 2. The levelling of the curves is clearly seen in this figure for
the order of the polynomial 7 and higher. Hereafter, numerical results for various geometrical
and/or physical parameters are obtained using p1 ¼ p2 ¼ 12 in the displacement fields given in
Eq. (10). This translates into solving eigenvalue problem with the matrix order of
5ðp1 þ 1Þ2 ¼ 845.
4. Comparison with the finite element method

In order to validate the present method, frequencies for the first five modes are calculated by
taking the subtended angles y0 ¼ 30� and 601 to represent, respectively, the shallow and deep
shells and length-to-radius ratio L=R ¼ 0:5 corresponding to a very short shell. The values of the
thickness parameter chosen include h=R ¼ 0:05; 0:01 and 0.005, which cover the range from
moderately thick to very thin shells. Similarly, to examine the effects of the skew angle of the
panel on the natural frequencies, calculations are performed with a ¼ 0�; 15�; 30� and 451, wherein
a ¼ 0� represents a rectangular circular cylindrical shell. Then the results are compared with those
obtained from a commercial FE code I-DEAS. The FE mesh that was constructed for the analysis
used 300 eight-node-shell-elements, 30 in the circumferential direction and 10 in the longitudinal
direction. With this number of elements, the mesh consisted of 981 nodes, where as only 169
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Table 1

Convergence of the non-dimensional frequency parameter O ¼ oR
ffiffiffiffiffiffiffiffiffi
r=E

p
for a skewed open cylindrical shell fixed at

the curved edges

y0 p1 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

301 4 0.675 0.702 1.033 1.634 3.163

5 0.577 0.580 0.954 1.078 1.512

6 0.526 0.527 0.934 0.989 1.241

7 0.515 0.517 0.922 0.957 1.123

8 0.511 0.511 0.918 0.952 1.101

9 0.508 0.508 0.916 0.950 1.097

10 0.506 0.507 0.914 0.949 1.095

11 0.506 0.506 0.914 0.948 1.093

12 0.505 0.505 0.913 0.947 1.092

451 4 0.708 0.718 1.018 1.161 1.946

5 0.608 0.608 0.976 1.003 1.334

6 0.545 0.549 0.953 0.982 1.026

7 0.526 0.532 0.938 0.961 1.011

8 0.518 0.519 0.932 0.949 1.008

9 0.512 0.513 0.927 0.943 1.007

10 0.510 0.509 0.925 0.940 1.007

11 0.510 0.509 0.925 0.940 1.007

12 0.506 0.507 0.923 0.937 1.007

601 4 0.727 0.741 1.035 1.050 1.545

5 0.640 0.649 0.987 1.027 1.137

6 0.575 0.581 0.975 0.976 1.022

7 0.544 0.550 0.957 0.960 1.021

8 0.528 0.534 0.945 0.952 1.005

9 0.521 0.521 0.940 0.942 0.996

10 0.514 0.515 0.935 0.937 0.995

11 0.511 0.511 0.932 0.934 0.995

12 0.509 0.509 0.930 0.932 0.995

Parameters: a ¼ 45�, h=R ¼ 0:01, L=R ¼ 0:5, and order of the polynomial p1 ¼ p2.
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displacement nodes were used in the model from the present formulation. Results from the two
methods are presented in Table 3. The comparison is seen to be extremely favorable, i.e. within
one percent difference, except for the case with a ¼ 45� where the difference appears to be in the
neighborhood of three percent at higher modes. The values of the frequencies produced by the FE
method in this case are consistently seen to be lower than those from the present method. From
the experience of the authors of this paper, it seems that eight node isoparametric shell elements
are inherently softer than its four-node counterparts. To have a graphical view of the comparison,
results from Table 3 for the cases with h=R ¼ 0:01 are plotted and shown in Figs. 4(a) for the 301
and Fig. 4(b) for the 601 subtended angles. Solid line represents curve for the rectangular panel
and the skewed panels are represented by various types of broken lines. More comparison with
the FE method is carried out for longer panels and results are presented in Table 4 for cases with



ARTICLE IN PRESS

Table 2

Convergence of the non-dimensional frequency parameter O ¼ oR
ffiffiffiffiffiffiffiffiffi
r=E

p
for skewed open cylindrical shell fixed at the

curved edges

y0 p1 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

301 4 2.242 2.315 3.129 5.130 5.399

5 2.112 2.114 2.857 3.807 5.038

6 2.044 2.045 2.790 3.591 4.622

7 2.021 2.029 2.779 3.516 4.415

8 2.018 2.022 2.775 3.510 4.364

9 2.013 2.019 2.774 3.507 4.356

10 2.012 2.017 2.773 3.506 4.351

11 2.012 2.016 2.772 3.505 4.350

12 2.006 2.014 2.772 3.505 4.349

451 4 2.337 2.348 2.822 3.914 5.261

5 2.148 2.171 2.666 3.001 4.671

6 2.075 2.075 2.640 2.914 3.534

7 2.048 2.046 2.636 2.887 3.431

8 2.031 2.033 2.634 2.883 3.359

9 2.024 2.025 2.633 2.880 3.354

10 2.021 2.020 2.632 2.879 3.351

11 2.018 2.018 2.632 2.878 3.350

12 2.017 2.016 2.632 2.877 3.349

601 4 2.379 2.410 2.714 3.331 4.879

5 2.203 2.224 2.621 2.772 3.937

6 2.102 2.122 2.607 2.728 3.013

7 2.073 2.072 2.605 2.716 2.977

8 2.051 2.049 2.604 2.713 2.939

9 2.035 2.036 2.603 2.711 2.936

10 2.027 2.028 2.603 2.710 2.934

11 2.023 2.023 2.603 2.709 2.933

12 2.020 2.020 2.602 2.708 2.932

Parameters: a ¼ 45�, h/R ¼ 0.05, L/R ¼ 0.5, and order of the polynomial p1 ¼ p2.
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a ¼ 0� representing rectangular type and a ¼ 45� the skewed type, respectively, for the same
thickness-to-radius parameter of 0.01. Excellent agreement is seen also for the long cylindrical
panels.
5. Frequency variation against the shell thickness

In this section, frequencies for open cylindrical shells having L=R ¼ 0:5 and clamped on the
curved edges are investigated against the thickness-to-radius ratio (h/R) of the shell. Skew angles
a ¼ 0� and 451 are considered along with subtended angles y0 ¼ 30�; 45�; 60� and 751 to cover the
shallow-to-deep shells. Results with a ¼ 0�, which represents rectangular curved panel, are
presented in Fig. 5 for the above four opening angles. As expected, value of the dimensionless
frequency parameter O increases with the thickness parameter (h/R). In all cases, the frequencies
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of the first two modes are very close to each other and get even closer as the subtended angle
increases. It is to be noted that for the case with y0 ¼ 30� and 451 frequencies are widely separated
when 0:01ph=Rp0:05, whereas the frequency band gets narrow for deep shells with y0 ¼ 60� and
751. Also, the values of the frequencies decrease as the subtended angle increases. Results for the
set with a ¼ 45� are presented in Fig. 6, wherein the variation pattern of the frequencies for the
skewed shell is observed to be very similar to that for the rectangular shells, but the values are
slightly higher for the case of the skewed type. For the deep skew shells with y0 ¼ 60� and 751, it is
found that the frequencies for the first two natural modes are almost equal and the remaining
three higher modes appear in clustered form. Plots of frequency parameter versus thickness to
radius ratio have been generated as well with L=R ¼ 1:0, but the results are not included in this
paper, as the general trend for this case have been found to be very similar to frequency
distribution of the shell with L=R ¼ 0:50.
The above results have been obtained with the rotary inertia terms included in the formulation.

However, the rotary inertia terms can be conveniently dropped from equations within the present
setup by setting zero values to the last two rows and columns of matrix [A0] in Eq. (15). With this
condition, a sample calculation was performed for the case presented in Table 2 with y0 ¼ 30�

without the rotary inertia terms and the results obtained are: 2.023, 2.033, 2.808, 3.581, and 4.455
for the first five modes with p1 ¼ 12. The corresponding results from Table 2 including the rotary
inertia are: 2.006, 2.014, 2.772, 3.505, and 4.345. As expected, lower values of the frequencies are
found when the rotary inertia terms are included and the difference between the results from the
two sets increases with the mode number.
6. Mode shapes

Mode shapes corresponding to the first five natural modes of the free vibration of both the
rectangular ða ¼ 0�Þ and skewed ða ¼ 45�Þ shells are plotted and shown in Figs. 7 and 8,
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Table 3

Comparison of the non-dimensional frequency parameter O ¼ oR
ffiffiffiffiffiffiffiffiffi
r=E

p
for a skewed open cylindrical shell fixed at the

curved edges

y0 Mode P-type I-DEAS P-type I-DEAS P-type I-DEAS P-type I-DEAS

a ¼ 01 a ¼ 151 a ¼ 301 a ¼ 451

h=R ¼ 0:05
301 1 1.314 1.307 1.375 1.366 1.585 1.567 2.006 1.979

2 1.462 1.452 1.500 1.489 1.643 1.626 2.014 1.981

3 2.269 2.272 2.271 2.274 2.340 2.338 2.772 2.746

4 3.300 3.278 3.423 3.396 3.498 3.512 3.505 3.503

5 3.511 3.488 3.626 3.599 3.929 3.893 4.349 4.332

601 1 1.365 1.356 1.423 1.405 1.616 1.565 2.020 1.901

2 1.383 1.375 1.435 1.419 1.614 1.563 2.020 1.901

3 1.609 1.601 1.678 1.667 1.935 1.912 2.602 2.538

4 1.924 1.915 1.960 1.948 2.133 2.107 2.708 2.625

5 2.521 2.518 2.507 2.504 2.544 2.531 2.932 2.864

h=R ¼ 0:01
301 1 0.359 0.358 0.374 0.373 0.421 0.419 0.505 0.500

2 0.409 0.409 0.413 0.413 0.434 0.433 0.505 0.500

3 0.627 0.626 0.651 0.650 0.736 0.734 0.913 0.909

4 0.873 0.872 0.863 0.862 0.857 0.856 0.947 0.942

5 0.900 0.899 0.903 0.901 0.980 0.976 1.092 1.086

601 1 0.380 0.379 0.392 0.389 0.428 0.419 0.509 0.484

2 0.382 0.381 0.393 0.390 0.428 0.419 0.509 0.484

3 0.632 0.630 0.659 0.656 0.751 0.742 0.930 0.900

4 0.633 0.632 0.661 0.659 0.762 0.752 0.932 0.902

5 0.784 0.781 0.784 0.782 0.824 0.819 0.995 0.983

h=R ¼ 0:005
301 1 0.227 0.227 0.234 0.234 0.255 0.254 0.295 0.292

2 0.236 0.236 0.241 0.240 0.257 0.256 0.295 0.292

3 0.487 0.487 0.486 0.485 0.512 0.510 0.591 0.587

4 0.511 0.510 0.504 0.504 0.533 0.531 0.597 0.593

5 0.511 0.511 0.534 0.533 0.582 0.579 0.687 0.682

601 1 0.232 0.231 0.238 0.236 0.257 0.252 0.298 0.284

2 0.233 0.232 0.238 0.236 0.257 0.252 0.298 0.284

3 0.438 0.437 0.458 0.456 0.520 0.513 0.602 0.576

4 0.446 0.445 0.463 0.461 0.528 0.520 0.602 0.576

5 0.512 0.509 0.511 0.508 0.533 0.525 0.688 0.658

Parameter: L=R ¼ 0:5, representing a short panel.
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respectively. Both the 3D deformed surface and the contour plot on the developed surface are
presented. By examining each mode one at a time, the first mode shown in Fig. 7(a) is symmetrical
about both axes for the rectangular panel. The second mode shown in Fig. 7(b) is symmetric
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Table 4

Comparison of the non-dimensional frequency parameter O ¼ oR
ffiffiffiffiffiffiffiffiffi
r=E

p
for open cylindrical shells fixed at the curved

edges with h=R ¼ 0:01

y0 Mode P-type I-DEAS P-type I-DEAS P-type I-DEAS P-type I-DEAS

L=R ¼ 1:0 L=R ¼ 2:0 L=R ¼ 3:0 L=R ¼ 4:0

a ¼ 01

301 1 0.120 0.120 0.046 0.046 0.025 0.025 0.014 0.014

2 0.169 0.169 0.054 0.054 0.028 0.028 0.020 0.020

3 0.281 0.280 0.101 0.100 0.059 0.059 0.039 0.039

4 0.330 0.327 0.132 0.132 0.066 0.066 0.042 0.042

5 0.338 0.337 0.167 0.167 0.095 0.094 0.066 0.065

601 1 0.142 0.141 0.061 0.061 0.032 0.031 0.019 0.019

2 0.153 0.151 0.069 0.068 0.054 0.054 0.043 0.043

3 0.305 0.300 0.119 0.118 0.075 0.074 0.047 0.047

4 0.305 0.303 0.129 0.128 0.078 0.077 0.063 0.063

5 0.308 0.303 0.187 0.185 0.106 0.106 0.075 0.075

a ¼ 451

301 1 0.170 0.169 0.056 0.055 0.030 0.029 0.016 0.016

2 0.188 0.187 0.066 0.066 0.032 0.031 0.022 0.022

3 0.334 0.332 0.122 0.121 0.067 0.066 0.042 0.042

4 0.368 0.366 0.133 0.133 0.072 0.071 0.046 0.045

5 0.419 0.414 0.204 0.203 0.109 0.108 0.072 0.071

601 1 0.181 0.177 0.074 0.073 0.040 0.039 0.024 0.023

2 0.181 0.178 0.076 0.076 0.053 0.053 0.040 0.040

3 0.349 0.341 0.130 0.129 0.080 0.079 0.059 0.058

4 0.349 0.343 0.139 0.138 0.083 0.083 0.062 0.062

5 0.449 0.435 0.208 0.206 0.120 0.120 0.084 0.083

Fig. 4. Comparison of the non-dimensional frequency parameter O ¼ oR
ffiffiffiffiffiffiffiffiffi
r=E

p
for skewed open cylindrical shell fixed

at the curved edges with h=R ¼ 0:01, and L=R ¼ 0:5: x-mark, p-type method; circle, I-DEAS; solid, skew angle a ¼ 0�;

dashed, a ¼ 15�; dotted, a ¼ 30�; dash-dot, a ¼ 45�. (a) Subtended angle y0 ¼ 30� and (b) y0 ¼ 60�.
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Fig. 5. Frequency parameter ðOÞ versus thickness-to-radius ratio (h/R) for shells with skew angle a ¼ 0� and L/R ¼ 0.5:

diamond, mode 1; star, mode 2; triangle, mode 3; circle, mode 4; square, mode 5. (a) Subtended angle y0 ¼ 30�;

(b) y0 ¼ 45�; (c) y0 ¼ 60� and (d) y0 ¼ 75�.
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about the circumferential axis and antisymmetric about the longitudinal axis. For the third mode,
the symmetry and antisymmetry are opposite of the second mode. The behavior of the fourth
mode is the same as that of the second mode, i.e. symmetric about the circumferential axis and
antisymmetric about the longitudinal axis. The fifth mode is antisymmetric in both directions. For
the rectangular open cylindrical panel, the symmetry and antisymmetry exist in both the wave
form and the amplitude of vibration. One should note here that in classical method of solution of
this problem, each mode shape is identified by the axial and circumferential mode numbers m and
n, respectively, because the displacement fields are assumed in terms of transcendental functions
with specified wavenumbers, e.g. sinmx, cos ny, etc. In the present numerical method, polynomials
are considered in the displacement fields without any reference to the axial and circumferential
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Fig. 6. Frequency parameter ðOÞ versus thickness-to-radius ratio (h/R) for shells with skew angle a ¼ 45� and

L/R ¼ 0.5: diamond, mode 1; star, mode 2; triangle, mode 3; circle, mode 4; square, mode 5. (a) Subtended angle

y0 ¼ 30�; (b) y0 ¼ 45�; (c) y0 ¼ 60� and (d) y0 ¼ 75�.
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mode (or wave) numbers. Therefore, one is left with the identification of the mode numbers
through physical observation of the deformed surface.
Shown in Fig. 8 are the corresponding mode shapes of the skewed panel with ða ¼ 45�Þ and

remaining parameters are identical to those of the rectangular panel. The skewed panel exhibit
symmetry and antisymmetry in the mode shapes about the skewed axes, but the amplitudes of
vibration are unequal on the two parallel edges.
7. Concluding remarks

Free vibration of skewed circular open cylindrical shell has been investigated in this paper using
a numerical method that is slightly a modified form of the Rayleigh–Ritz method. In the present
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case, the field functions are attached to the displacement and rotation components at a nodal
point, whereas in the Rayleigh–Ritz method, the functions are attached to the boundary
conditions. The geometry is first defined by a set of bilinear interpolating functions in natural
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coordinates and the displacement fields are prescribed by relatively very high-order polynomials
for each dof of the pre-defined displacement nodes. Numerical results are obtained for cylindrical
panels with skew angles 0–451 and subtended angles 30–751 covering a wide range from shallow-
to-deep shells. As expected, the frequencies increase with the thickness and also with the skew
angles. Results for the deep skew shells with opening angles 601 and 751 show that the first two
modes are bunched together and the other three higher modes appear in a cluster for each case.
The rectangular shell shows symmetry and antisymmetry in both the wave form and the
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amplitude of vibration. On the other hand, the mode shapes of the skewed shell show similar
pattern in wave form but not in the amplitude of vibration.
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